Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code

Author:

Eremin DORCID,Berger B,Engel D,Kallähn J,Köhn K,Krüger DORCID,Xu LORCID,Oberberg M,Wölfel C,Lunze J,Awakowicz P,Schulze JORCID,Brinkmann R P

Abstract

Abstract The present work investigates electron transport and heating mechanisms using an (r, z) particle-in-cell simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. Due to a strong geometric asymmetry and a blocking capacitor, the discharge features a large negative self-bias conducive to sputtering applications. Employing decomposition of the electron transport parallel and perpendicular to the magnetic field lines, it is shown that for the considered magnetic field topology the electron current flows through different channels in the (r, z) plane: a ‘transverse’ one, which involves current flow through the electrons’ magnetic confinement region (EMCR) above the racetrack, and two ‘longitudinal’ ones, where electrons’ guiding centers move along the magnetic field lines. Electrons gain energy from the electric field along these channels following various mechanisms, which are rather distinct from those sustaining dc-powered magnetrons. The longitudinal power absorption involves mirror-effect heating (MEH), nonlinear electron resonance heating, magnetized bounce heating (MBH), and the heating by the ambipolar field at the sheath-presheath interface. The MEH and MBH represent two new mechanisms missing from the previous literature. The MEH is caused by a reversed electric field needed to overcome the mirror force generated in a nonuniform magnetic field to ensure sufficient flux of electrons to the powered electrode, and the MBH is related to a possibility for an electron to undergo multiple reflections from the expanding sheath in the longitudinal channels connected by the arc-like magnetic field. The electron heating in the transverse channel is caused mostly by the essentially collisionless Hall heating in the EMCR above the racetrack, generating a strong E × B azimuthal drift velocity. The latter mechanism results in an efficient electron energization, i.e. energy transfer from the electric field to electrons in the inelastic range. Since the main electron population energized by this mechanism remains confined within the discharge for a long time, its contribution to the ionization processes is dominant.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3