Experimental verification of deposition rate increase, with maintained high ionized flux fraction, by shortening the HiPIMS pulse

Author:

Shimizu TORCID,Zanáška MORCID,Villoan R PORCID,Brenning N,Helmersson UORCID,Lundin DanielORCID

Abstract

Abstract High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition technique, providing a high flux of metal ions to the substrate. However, one of the disadvantages for industrial use of this technique is a reduced deposition rate compared to direct current magnetron sputtering (dcMS) at equal average power. This is mainly due to a high target back-attraction probability of the metal ions with typical values in the range 70%–90% during the pulse. In order to reduce this effect, we focused on the contribution of ion fluxes available immediately after each HiPIMS pulse; a time also known as afterglow. Without a negative potential on the target at this stage of the HiPIMS process, the back-attracting electric field disappears allowing remaining ions to escape the magnetic trap and travel toward the substrate. To quantify the proposed mechanism, we studied the effect of HiPIMS pulse duration on the outward flux of film-forming species in titanium discharges, which are known to exhibit more than 50% reduction in deposition rate compared to dcMS. By shortening the HiPIMS pulse length, it was found that the contribution to the outward flux of film-forming species from the afterglow increases significantly. For example, HiPIMS discharges at a constant peak current density of about 1.10 A cm−2 showed a 45% increase of the deposition rate, by shortening the pulse duration from 200 to 50 μs. Ionized flux fraction measurements, using a gridless quartz crystal micro-balance-based ion meter, showed that this increase of the deposition rate could be achieved without compromising the ionized flux fraction, which remained approximately constant. The key to the achieved optimization of HiPIMS discharges lies in maintaining a high peak discharge current also for short pulse lengths to ensure sufficient ionization of the sputtered species.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3