Hybrid simulation of instabilities in capacitively coupled RF CF4/Ar plasmas

Author:

Dong WanORCID,Zhang Yi-Fan,Dai Zhong-Ling,Schulze JulianORCID,Song Yuan-HongORCID,Wang You-NianORCID

Abstract

Abstract Radio frequency capacitively coupled plasmas (RF CCPs) sustained in fluorocarbon gases or their mixtures with argon are widely used in plasma-enhanced etching. In this work, we conduct studies on instabilities in a capacitive CF4/Ar (1:9) plasma driven at 13.56 MHz at a pressure of 150 mTorr, by using a one-dimensional fluid/Monte-Carlo (MC) hybrid model. Fluctuations are observed in densities and fluxes of charged particles, electric field, as well as electron impact reaction rates, especially in the bulk. As the gap distance between the electrodes increases from 2.8 cm to 3.8 cm, the fluctuation amplitudes become smaller gradually and the instability period gets longer, as the driving power density ranges from 250 to 300 W m−2. The instabilities are on a time scale of 16–20 RF periods, much shorter than those millisecond periodic instabilities observed experimentally owing to attachment/detachment in electronegative plasmas. At smaller electrode gap, a positive feedback to the instability generation is induced by the enhanced bulk electric field in the highly electronegative mode, by which the electron temperature keeps strongly oscillating. Electrons at high energy are mostly consumed by ionization rather than attachment process, making the electron density increase and overshoot to a much higher value. And then, the discharge becomes weakly electronegative and the bulk electric field becomes weak gradually, resulting in the continuous decrease of the electron density as the electron temperature keeps at a much lower mean value. Until the electron density attains its minimum value again, the instability cycle is formed. The ionization of Ar metastables and dissociative attachment of CF4 are noticed to play minor roles compared with the Ar ionization and excitation at this stage in this mixture discharge. The variations of electron outflow from and negative ion inflow to the discharge center need to be taken into account in the electron density fluctuations, apart from the corresponding electron impact reaction rates. We also notice more than 20% change of the Ar+ ion flux to the powered electrode and about 16% difference in the etching rate due to the instabilities in the case of 2.8 cm gap distance, which is worthy of more attention for improvement of etching technology.

Funder

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3