Abstract
Abstract
In recent years, the defect engineering of titania via reduction treatments has shown a high potential for enabling efficient and co-catalyst-free photocatalytic H2 generation from methanol/water solutions. However, defect engineering simultaneously alters several properties of TiO2. Here, we use pristine (white) and hydrogenated (gray) anatase nanosheets with dominant (001) facets. By comparing electrical conductivity, photocurrent spectra, transient photocurrent response, and photocatalytic H2 evolution, we show that the increased conductivity or broad visible light absorption of gray titania is not responsible for its increased activity. Instead, the true bottleneck is the hole transfer rate that is significantly accelerated while using gray instead of white modification. Moreover, the hole transfer reaction causes the accumulation of the reaction products in pure water, hindering the photocatalytic H2 evolution over time. These combined factors explain the superior performance of gray titania over white titania in photoelectrochemical or photocatalytic water splitting.
Funder
DFG
European Regional Development Fund
Ministry of Education, Youth and Sports of the Czech Republic
Center for Nanoanalysis and Electron Microscopy
Universität Erlangen-Nürnberg
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献