Affiliation:
1. Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
Abstract
We showed two demonstrations of the local charge carrier dynamics measurements of photocatalytic materials using our recently developed time-resolved phase-contrast microscopic technique combined with the clustering analyses. In this microscopic time-resolved technique, we observed the charge carrier dynamics via the refractive index change instead of the luminescence or absorption change, where we could often observe non-radiative charge carrier processes such as charge carrier trapping and non-radiative relaxation. By the clustering analyses of all the pixel-by-pixel responses, we could extract various different charge carrier dynamics because photocatalytic materials have inhomogeneity on surfaces and the charge carrier behavior depends on the local structure and species. Even for typical photocatalytic materials, titanium oxide and hematite, we could recognize various charge carrier dynamics, which cannot be differentiated by the general fitting procedure for the averaged time response. We could categorize the surface-trapped charge carriers (holes and electrons) and bulk carriers in the nanosecond to millisecond order, which indicates that this analytical procedure will play an important role in understanding the charge carrier dynamics for various photocatalytic materials.
Funder
JST PRESTO
JSPS Kakenhi
Institute of Science and Engineering, Chuo University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献