Long‐Term Stability of Light‐Induced Ti3+ Defects in TiO2 Nanotubes for Amplified Photoelectrochemical Water Splitting

Author:

Wierzbicka Ewa1ORCID,Szaniawska‐Białas Ewelina1ORCID,Schultz Thorsten23ORCID,Basilio Amanda O.4,Siemiaszko Dariusz1ORCID,Ray Kallol4ORCID,Koch Norbert23ORCID,Pinna Nicola5ORCID,Polański Marek1ORCID

Affiliation:

1. Department of Functional Materials and Hydrogen Technology Faculty of Advanced Technologies and Chemistry Military University of Technology Kaliskiego Street 2 00908 Warsaw Poland

2. Institut für Physik and IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Berlin Germany

3. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany

4. Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany

5. Department of Chemistry IRIS Adlershof & The Center for the Science of Materials Berlin Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany

Abstract

AbstractThis study shows that the simple approach of keeping anodic TiO2 nanotubes at 70 °C in ethanol for 1 h results in improved photoelectrochemical water splitting activity due to initiation of crystallization in the material amplified by the light‐induced formation of a Ti3+−Vo states under UV 365 nm illumination. For the first time, the light‐induced Ti3+−Vo states are generated when oxygen is present in the reaction solution and are stable when in contact with air (oxygen) for a long time (two months). We confirmed here that the amorphous or nearly amorphous structure of titania supports the survival of Ti3+ species in contact with oxygen. It is also shown that the ethanol treatment substantially improves the morphology of the titania nanotube arrays, specifically, less surface cracking and surface purification from C‐ and F‐based contamination from the electrolyte used for anodizing.

Funder

Narodowa Agencja Wymiany Akademickiej

Wojskowa Akademia Techniczna

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3