Real-time adaptive leg-stiffness for roll compensation via magnetorheological control in a legged robot

Author:

Christie M DORCID,Sun SORCID,Deng LORCID,Du H,Zhang S WORCID,Li W HORCID

Abstract

Abstract Over the recent few decades, the evolving research-field of legged robotics has seen various mechanical and control-based developments. Inspired by biological species, a significant adaptation in modern mechanical leg designs has been the implementation of adjustable stiffness, shifting from what were previously simple linkages to more-complex variable stiffness actuators. Physiological studies previously demonstrated leg-stiffness modulation was not only a common trait in multiple biological locomotors, but also played a key role in disturbance recovery for humans. Guided by this, recent robotics research has shown that this can also be applied to legged robots to achieve similar locomotion adaptations, albeit often limited by the tuning time of leg stiffness in such circumstances. This study proposes real-time adaptive stiffness robot legs which are governed by fast-response magnetorheological fluid dampers, enabling stiffness adjustment upon a single step. Through experimental characterisation and model validation, these legs are shown to achieve a maximum stiffness shift of 114%. Enabled by real-time control during locomotion, improved performance and roll-angle stability is experimentally demonstrated for a bipedal robot test platform. Such improvement to locomotion is found through typical legged locomotion scenarios, with the platform encountering: obstacles, valleys, and coronal gradients in a comprehensive series of experiments.

Funder

Research Training Program

Australian Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3