Resonant printing flexible piezoresistive pressure sensor with spherical microstructures

Author:

Yu ZhihengORCID,Hu Guohong,Chen Jian,Huang Fengli,Zhao Yun,Feng Jijun

Abstract

Abstract Flexible pressure sensors have attracted much attention in academia owing to their wide-ranging applications in wearable electronics, medical electronics and digital health. However, practical engineering applications have been restricted because of limitations in efficiency, manufacturing costs and sensitivity. In this work, we propose an innovative method for high-efficiency printing of microstructures that replaces traditional inverted mold methods. We developed a high-sensitivity flexible piezoresistive pressure (FPP) sensor with a high manufacturing efficiency and low manufacturing cost. The sensor was encapsulated by connecting a polydimethylsiloxane film with microstructures prepared using the sandpaper-molding method, and then integrated with an interdigital electrode and spherical micro-structures fabricated via resonant printing. In this way, the manufacturing process was simplified by breaking it down into two steps. The performance of the sensor was assessed by conducting experiments under different pressure regimes. The results demonstrated ultra-high sensitivity (0.0058–0.024 kPa−1) and a wide pressure detection range (1–100 kPa), spanning the entire range of pressure monitoring typically observed for vital and health signals. The response time of the sensor was less than 72 ms. Furthermore, the performance of the fabricated sensor was highly stable after 1000 bending cycle. The potential applications of the FPP sensor are discussed in area such as the human body and mouse.

Funder

Basic Public Welfare Research Program of Zhejiang Province

Open Fund of the Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province

National Key R&D Program of China

Department of Education of Zhejiang Province

Science and Technology Bureau of Jiaxing City

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3