Piezoresistive strain sensor array using polydimethylsiloxane-based conducting nanocomposites for electronic skin application

Author:

Chong Yung Sin,Yeoh Keat Hoe,Leow Pei Ling,Chee Pei Song

Abstract

Purpose This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of multiwalled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite. The strain sensor array induces localized resistance changes at different external mechanical forces, which can be potentially implemented as electronic skin. Design/methodology/approach The working principle is the piezoresistivity of the strain sensor array is based on the tunnelling resistance connection between the fillers and reformation of the percolating path when the PDMS and MWCNT composite deforms. When an external compression stimulus is exerted, the MWCNT inter-filler distance at the conductive block array reduces, resulting in the reduction of the resistance. The resistance between the conductive blocks in the array, on the other hand, increases when the strain sensor is exposed to an external stretching force. The methodology was as follows: Numerical simulation has been performed to study the pressure distribution across the sensor. This method applies two thin layers of conductive elastomer composite across a 2 × 3 conductive block array, where the former is to detect the stretchable force, whereas the latter is to detect the compression force. The fabrication of the strain sensor consists of two main stages: fabricating the conducting block array (detect compression force) and depositing two thin conductive layers (detect stretchable force). Findings Characterizations have been performed at the sensor pressure response: static and dynamic configuration, strain sensing and temperature sensing. Both pressure and strain sensing are studied in terms of the temporal response. The temporal response shows rapid resistance changes and returns to its original value after the external load is removed. The electrical conductivity of the prototype correlates to the temperature by showing negative temperature coefficient material behaviour with the sensitivity of −0.105 MΩ/°C. Research limitations/implications The conductive sensor array can potentially be implemented as electronic skin due to its reaction with mechanical stimuli: compression and stretchable pressure force, strain sensing and temperature sensing. Originality/value This prototype enables various static and dynamic stimulus detections, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of MWCNT and PDMS composite. Conventional design might need to integrate different microfeatures to perform the similar task, especially for dynamic force sensing.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference38 articles.

1. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites,2011

2. Parallel Microcracks-based ultrasensitive and highly stretchable strain sensors;Acs Applied Materials & Interfaces,2016

3. Bidirectional flow micropump based on dynamic rectification;Sensors and Actuators A: Physical,2013

4. Electrical and thermal properties of carbon-nanotube composite for flexible electric heating-unit applications;IEEE Electron Device Letters,2013

5. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm,2014

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A large-area less-wires stretchable robot electronic skin;Sensors and Actuators A: Physical;2024-10

2. A self-powered spring-based triboelectric vibration sensor;IOP Conference Series: Earth and Environmental Science;2024-07-01

3. Kirigami-inspired self-powered pressure sensor based on shape fixation treatment in IPMC material;Smart Materials and Structures;2024-01-24

4. Development of A Wearable Self-Powered Sensor Using Triboelectric Mechanism;2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST);2024-01-17

5. A Large-Area Less-Wires Stretchable Robot Electronic Skin;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3