A piezoelectric energy harvester with parallel connection using beams of different lengths to improve output performance

Author:

Wang LiangORCID,Su Donghao

Abstract

Abstract The purpose of this paper is to design an energy harvester to improve output performance. The theoretical analysis of the piezoelectric energy harvester has been performed. Reducing the length of one cantilever beam, thereby changing the relative impact position, causing the amplitude of the two cantilever beams to be different, and making the waveform of two beams different. Some experiments have been tested to verify the feasibility of the device and compare the differences with Plan A. Based on the experiment, it can be concluded that the output voltage is higher at both high and low speeds. When the rotation speed is 255 r min−1, Plan B arrives at the optimum speed, and the maximum output voltage is 166.2 V, which significantly increases from 97.2 V of Plan A. The maximum output power is 0.966 W under the load resistance of 10 kΩ. The maximum voltage is 157.7 V under the load resistance of 120 kΩ. Nevertheless, the maximum voltage and maximum power of Plan A are 92.62 V and 0.52 W. Besides, the prototype has fewer materials and nearly 1.5 times the energy conversion rate compares to Plan A. It can light up 42 LEDs easily and can adapt to environmental vibration frequency changes, so it has an intensely adaptable and outstanding performance in practical applications.

Funder

Project of Science and Technology Development Plan of Jilin Province

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3