Design and evaluation of a magnetically coupled piezoelectric energy harvester with parallel connection

Author:

Zhang Yaxun1ORCID,Wang Heran1,Wang Liang1ORCID

Affiliation:

1. School of Mechanical Engineering, Northeast Electric Power University , Jilin 132012, China

Abstract

This work proposed a magnetically coupled piezoelectric energy harvester with parallel connections. The rectangular piezoelectric patch in the upper part of the device generates regular vibrations due to the nonlinear forces caused by magnetic coupling. The lower rectangular piezoelectric patch is deformed by contact collision excitation. The parallel connection effectively connects the two sets of piezoelectric patches together and fully exploits the performance of the piezoelectric energy harvester. The intrinsic frequency of the rectangular piezoelectric patch was simulated and verified experimentally. The rectangular piezoelectric patch generates a large vibration amplitude in high-speed operation due to its elasticity property. From the experimental results, it can be seen that the piezoelectric energy harvester can work well in different frequency bands. The parallel piezoelectric energy harvester with a three-contact rotor has a peak-to-peak voltage of 252 V at a speed of 120 r/min and 200 V at a speed of 240 r/min. The maximum voltage achieved by the piezoelectric energy harvester in parallel is 266 V at a speed of 180 r/min with a resistance of 1000 kΩ. The maximum voltage reached by a series-connected piezoelectric energy harvester is 256 V at a speed of 180 r/min and a resistance of 100 kΩ. The peak-to-peak power of the piezoelectric energy harvester connected in parallel is 0.313 W under a resistance of 100 kΩ and a speed of 180 r/min. Besides, the developed piezoelectric energy harvester can light up to 60 light-emitting diodes. Accordingly, the energy can be effectively harvested by the piezoelectric energy harvester and then supplied to the microelectronic device.

Funder

Project of Science and Technoloty Development Plan of Jilin Province

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3