An enhanced electromagnetic energy harvester based on dual ratchet structure with secondary energy recovery

Author:

Liang Xing,Shi GeORCID,Xia Yinshui,Jia Shengyao,Sun Yanwei,Hu Xiangzhan,Yuan Mingzhu,Xia Huakang

Abstract

Abstract With the continuous advancement of ultra-low-power electronic devices, capturing energy from the surrounding environment to power these smart devices has emerged as a new direction. However, most of the mechanical energy available for harvesting in the environment exhibits ultra-low frequencies. Therefore, the feasibility of self-powering low-power devices largely depends on the effective utilization of this ultra-low-frequency mechanical energy. Consequently, this work proposes an enhanced electromagnetic energy harvester based on a dual ratchet structure with secondary energy recovery. It converts ultra-low frequency vibrations into fast rotational movements by means of a rack and pinion mechanism, thus achieving high power output while maintaining a simple structure. Experimental tests demonstrate that the proposed harvester exhibits excellent power output under ultra-low-frequency external excitation. Under external excitation with a frequency of 1.5 Hz and an amplitude of 22 mm, with the optimal load matched at 20 Ω, the maximum power output reaches 598 mW, with a power density of 1572.65 μW cm−3. The secondary energy recovery power accounts for 34.4%, resulting in a 52.56% enhancement in the energy harvester’s output performance. Additionally, hand-cranking tests indicate that the fabricated prototype of the electromagnetic energy harvester can power some common electronic devices, including smartphones, showcasing significant application potential.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Project of Scientific and Technological Plan of Zhejiang ProvinceScientific and Technological Plan of Zhejiang Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3