Shape memory polymers enable versatile magneto-active structure with 4D printability, variable stiffness, shape-morphing and effective grasping

Author:

Yao Haojie,Yu MiaoORCID,Fu JieORCID,Zhu Mi,Li Yaping,Li Shixu,Gan Ruyi,Zhou Hengqing,Qi SongORCID

Abstract

Abstract Magneto-active structures with non-contact actuation, precise controllability, strong penetrability, and biological harmlessness have wide application prospects in the fields of soft robots, bionic engineering, medical treatment, and flexible transmission, among others. This paper presents the design of a magneto-active shape memory polymer (MASMP) based on a blending matrix of polycaprolactone and thermoplastic polyurethane. The aim is to enhance the environmental adaptability, manufacturability, and diversification of actuation modes of magnetic-active actuators. We conducted an analysis of the magnetic/thermal switchable mechanical properties and shape memory properties of MASMP. The results demonstrate excellent shape fixation and shape recovery rates, as well as excellent flexibility and magnetorheological effects. We fabricated flexible printing filaments with a uniform diameter by using a screw extruder, which enables high-precision 4D printing for MASMP. We printed several magneto-active structures, which demonstrated variable stiffness, shape-morphing, and shape memory capabilities. The shape-morphing performance is in good agreement with the simulation results of the design process. Furthermore, we successfully printed and assembled a flexible claw that exhibits an effective grasping and release function activated by a magnetic field. Finally, we developed a magneto-active structure with negative Poisson’s ratio, showing great potential for application in metamaterial structure.

Funder

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3