Abstract
Abstract
Recently, the demand for superior wearable strain sensors has been growing steadily with the widespread application of stretchable electronics. Based on polydimethylsiloxane (PDMS) and poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate, it has good compatibility with graphene doping. Herein, an uncomplicated and capable pressure sensor based on PEDOT/PDMS-wrapped free-standing reduced graphene oxide (rGO) was devised and manufactured. The graphene-containing composite conductor exhibits superb electrical conductivity, resilience, and piezoresistive effect, and surprisingly exhibits excellent antibacterial capabilities and cycling constancy. The fast response and recovery times of this pressure sensor are below 9 and 21 ms, respectively. The magnitude of current changes did not fluctuate significantly after 10 000 cycles of use, which indicates the great dependence of the sensor. Strain sensors as one of primary demand is that composite conductors are attached straight to the mortal skin (joints, elbows and knees) for actual-time monitoring.
Funder
Development and application of optical fiber sensing data acquisition and visualization analysis system based on big data
Research funding support from Guangxi Important Foundation EB grade cloud storage system key technology and application demonstration
Research on wireless flexible multi physiological parameter monitoring system
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献