A novel three-phase excitation piezoelectric motor for macro-micro actuation: integration design, systematic modeling, and experimental evaluation

Author:

Qiu JianminORCID,Yang Ying,Jin Jiamei,Wang Liang,Wang Yiping,Zhang Jiyang

Abstract

Abstract Macro-micro actuators require complex feedback control systems to obtain high positioning cooperativeness. However, the mechanical connections of macro-micro actuators are generally redundant in terms of their size, which is highly unfavorable for both miniaturization and integration. This paper presents an approach to address this problem based on a novel integration design for a three-phase excitation piezoelectric motor (TPM) that is capable of performing macro-micro actuation by switching its operating mode from resonant to nonresonant. The load capacity of the proposed TPM can reach 0.39 Nm with a maximum speed of 3.82 rad s−1 (36.5 rpm). This performance is achieved by using a unique triangular flexible stator that contains three piezoelectric stack actuators acting as vibrators and is excited by a three-phase electrical signal. A time-domain electromechanical coupling dynamic model is developed to determine the dynamic behavior of the proposed motor, and the modeling results are validated successfully by experimental results obtained from a fabricated prototype. The proposed motor is expected to be helpful for integration design of piezoelectric devices that require macro-micro actuation.

Funder

National Natural Science Foundation of China

Research and Development Program of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference55 articles.

1. Enhancement of robot accuracy using endpoint feedback and a macro-micro manipulator system;Sharon,1984

2. High speed micro positioning system based on coarse/fine pair control;Park;Mechatronics,1995

3. Design of a precision compliant parallel positioner driven by dual piezoelectric actuators;Dong;Sens. Actuators A,2007

4. A low cost macro-micro positioning system with SMA-actuated micro stage;Ho;Trans. Can. Soc. Mech. Eng.,2007

5. Optimal switching time control for suppressing residual vibration in a high-speed macro-micro manipulator system;Chen,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3