Design and fabrication of a crawling robot based on a soft actuator

Author:

Li JunfengORCID,Chen Songyu,Sun Minjie

Abstract

Abstract Inspired by biological systems, soft crawling robots provide unique advantages in terms of resilience and adaptive shaping during robotic motion. However, soft robots actuated by motors and pumps are usually heavy, noisy and bulky. In this paper, based on the principle of liquid-vapor changes of ethanol, a novel soft crawling robot that demonstrates more silent actuation and lighter weight compared with other robots is proposed. To increase the crawling speed of the robot, silicone mixed with liquid metal with a volume ratio of 20% is used to fabricate the actuators. The deformation of the actuator is analyzed and can be predicted using a theoretical model. To obtain effective crawling performance, a crawling locomotion sequence consisting of the three different parts (central, head and tail) based on the variable friction mechanism of actuators B and C is presented. The experimental results demonstrate that the robot can achieve forward movement on a horizontal surface and along vertical pipes and sticks. This study will provide further inspiration and guidance for the future development of crawling robots.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soft hand with programmable grasping mode for dexterous manipulation;Sensors and Actuators A: Physical;2024-10

2. Development of a novel nonlinear model and control strategy for soft continuum robots featuring hard magnetoactive elastomers;Smart Materials and Structures;2024-03-19

3. TICBot: Development of a Tensegrity-Based In-Pipe Crawling Robot;IEEE Transactions on Industrial Electronics;2023-08

4. An In-pipe Crawling Robot based on Tensegrity Structures;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

5. Review of the Latest Research on Snake Robots Focusing on the Structure, Motion and Control Method;International Journal of Control, Automation and Systems;2022-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3