Shape control of piezoelectric bimorph by piezo response function and global optimization algorithms: a comparative study

Author:

Sumit ,Shukla RahulORCID,Sinha A K

Abstract

Abstract In this paper shape control optimization of piezoelectric bimorph is done by piezo response function (PRF) and global optimization technique. PRF is used to formulate the optimization problem and global optimization algorithm is used to minimize the error between the target and the achieved shape. The performance of four global optimization techniques, simulated annealing (SA), genetic algorithm, particle swarm optimization and teacher learning based optimization are compared for the shape control of piezoelectric bimorph. 28 piezoelectric actuators are used in the piezoelectric bimorph to generate the sinusoidal profile, elliptical profile and arbitrary deformation profile by the external load. PRF is calculated by solving finite element model of piezoelectric bimorph and, optimization of electric potential with safety limit is done to achieve the target profiles by using all the aforementioned optimization techniques. SA gives best value of the objective function. At optimum electrode potential, the target and, achieved sinusoidal, elliptical and arbitrary deformation profiles obtained by SA at 5 × 107 computation, matches closely with root mean square (RMS) errors of 0.72, 12.18 and 28.86 nm, respectively. Subsequently, a robust and fully reproducible method for the shape control of piezo actuated deformable mirrors and smart structures is developed.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3