Study of PID controller gain for active vibration control using FEM based particle swarm optimization in COMSOL multiphysics

Author:

Sumit 12,Shukla R.12ORCID,Sinha A. K.12

Affiliation:

1. Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India

2. Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh, India

Abstract

Proportional integral derivative (PID) controllers are widely used to solve different control engineering problems. To know the dynamic behaviour of a working plant by mathematical modelling is quite challenging. Finite element method (FEM) is a well-known technique and broadly used for the modelling of engineering systems. This article presents the FEM-based heuristic approach to design and optimize the PID controllers. The ‘allowed area method’ has been used for the formulation of the objective function followed by the tuning of the PID controller. First, the proposed approach is tested on 2-degree of freedom (DOF) mass-spring-damper (MSD) system. FEM modelling of 2-DOF MSD system with PID controller has been carried out in COMSOL Multiphysics and coupling of particle swarm optimization (PSO) has been carried out with the FEM model of the MSD system, for the optimization of PID controller gain. The FEM results are in good agreement with the analytical one. Next, the established method is applied to design and optimize the PID controller gain to control the vibration of a cantilever beam using piezoelectric actuator. Similar to the MSD system, FEM modelling of PID controller for the smart beam has been carried out in COMSOL Multiphysics, and the coupling of PSO is carried out with the FEM model of the smart beam for the optimization of PID controller gain. Simulation of the uncontrolled and controlled responses of the smart beam is carried out at the optimum controller gain for free vibration and step excitation. The piezoelectric actuator of smart beam has successfully damped the vibration within approximately 2.5 s.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3