Iterative piezo response function-based optimization for static shape control of cantilever beam using nonlinear piezoactuators

Author:

Sumit ORCID,Kane S R,Sinha A K,Ganguli Tapas,Shukla RahulORCID

Abstract

Abstract Shape control of complex structures by optimizing the electrode potential is not achievable directly by analytical solutions and piezo response function base-optimization techniques due to the nonlinear response of piezoactuators. In the present work, a metaheuristic iterative piezo response function (iPRF)-based optimization technique is developed to achieve the arbitrary shape of piezoelectric unimorph (PU) using nonlinear piezoactuators. In this regard, a PU is fabricated using APC 850 piezoactuator to verify the nonlinear response in bending mode and nonlinear analytical model of PU. After verification, length of the inactive layer and number of piezoactuators in PU are modified to study the shape control. iPRF-based technique is used for the optimization of electric potential to achieve the target shape of modified piezoelectric unimorph (MPU) with various piezoactuators. The results of iPRF-based technique are compared with the results of simulated annealing (SA)-based direct optimization technique. Unlike SA-based direct optimization technique, prior knowledge of nonlinear coefficients of piezoactuator is not required in iPRF-based technique. Optimum values obtained from both the direct nonlinear solution- and iPRF-based optimization methods are same for all MPUs. Furthermore, the number of iterations of iPRF-based optimization approach is not affected by the number of piezoactuators used to achieve the desired shape.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3