Abstract
Abstract
Advances in nanotechnology have facilitated the exploration of submicron thermal transport. At this scale, Fourier’s law is no longer applicable, and the governing equation for thermal transport is the phonon Boltzmann transport equation (BTE). However, the availability of open-source solvers for the phonon BTE is limited, impeding progress in this field. This study introduces an open-source package, GiftBTE, for numerically solving the non-gray phonon BTE. GiftBTE employs deterministic solutions and provides both steady-state and transient solvers. For the steady-state solver, GiftBTE employs the implicit discrete ordinates method (DOM) with second-order spatial accuracy and the synthetic iterative scheme. For the transient solver, GiftBTE employs the explicit DOM with second-order spatial accuracy. This package demonstrates excellent computational efficiency, enabling realistic three-dimensional simulations of devices and materials. By interfacing with first-principles calculations, this solver enables parameter-free computation of submicron thermal transport. The application of GiftBTE includes, but is not limited to, computing the thermal conductivity of nanostructures, predicting temperature rises in transistors, and simulating laser heating processes.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献