Chiral anomaly induced negative magnetoresistance and weak anti-localization in Weyl semimetal Bi0.97Sb0.03 alloy

Author:

Kumar P,Nagpal V,Sudesh ,Patnaik SORCID

Abstract

Abstract Experimental access to massless Weyl fermions through topological materials promises substantial technological ramifications. Here, we report magneto-transport properties of Bi1−x Sb x alloy near the quantum critical point x = 3% and 3.5%. The two compositions that are synthesized and studied are single crystals of Bi0.97Sb0.03 and Bi0.965Sb0.035. We observe a transition from semimetal to semiconductor with the application of magnetic field in both specimens. An extremely large transverse magnetoresistance (MR) 1.8 × 105% and 8.2 × 104% at 2.5 K and 6 T is observed in Bi0.97Sb0.03 and Bi0.965Sb0.035, respectively. Kohler scaling of transverse MR reveals the crossover from low field quadratic MR to a high field linear MR at low temperatures in both samples. A decrease in longitudinal MR is observed only in Bi0.97Sb0.03 that implies the presence of chiral anomaly associated with the Weyl state at the crossover point (x = 0.03) in Bi1−x Sb x system. The chiral anomaly is absent for the sample Bi0.965Sb0.035. A sharp increase in longitudinal resistivity for Bi0.97Sb0.03 close to zero magnetic fields indicates the weak anti-localization effect in Bi0.97Sb0.03. Extremely high carrier concentrations and high mobilities have been recorded for both the samples.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3