Weak antilocalization, spin–orbit interaction, and phase coherence length of a Dirac semimetal Bi0.97Sb0.03

Author:

Salawu Yusuff Adeyemi,Yun Jae Hyun,Rhyee Jong-Soo,Sasaki Minoru,Kim Heon-Jung

Abstract

AbstractThe present study develops a general framework for weak antilocalization (WAL) in a three-dimensional (3D) system, which can be applied for a consistent description of longitudinal resistivity $$\rho_{xx} \left( B \right)$$ ρ xx B and Hall resistivity $$\rho_{xy} \left( B \right)$$ ρ xy B over a wide temperature (T) range. Compared to the previous approach Vu et al. (Phys Rev B 100:125162, 2019), which assumes infinite phase coherence length (lϕ) and a zero spin–orbit scattering length (lSO), the present framework is more general, covering high T and the intermediate spin–orbit coupling strength. Based on the new approach, the $$\rho_{xx} \left( B \right)$$ ρ xx B and $$\rho_{xy} \left( B \right)$$ ρ xy B of the Dirac semimetal Bi0.97Sb0.03 was analyzed over a wide T range from 1.7 to 300 K. The present framework not only explains the main features of the experimental data but also enables one to estimate lϕ and lSO at different temperatures. The lϕ has a power-law T dependence at high T and saturates at low T. In contrast, the lSO shows negligible T dependence. Because of the different T dependence, a crossover occurs from the lSO-dominant low-T to the lϕ-dominant high-T regions. Accordingly, the hallmark features of weak antilocalization (WAL) in $$\rho_{xx} \left( B \right)$$ ρ xx B and $$\rho_{xy} \left( B \right)$$ ρ xy B are gradually suppressed across the crossover with increasing T. The present theory describes both low-T and high-T regions successfully, which is impossible in the previous approximate approach. This work offers insights for understanding quantum electrical transport phenomena and their underlying physics, particularly when multiple WAL length scales are competing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3