Magneto-transport study on Sn-rich Sn1−xGex thin films enabled by CdTe buffer layer

Author:

Basnet Rabindra12ORCID,Upreti Dinesh1ORCID,McCarthy Tyler T.3ORCID,Ju Zheng3ORCID,McMinn Allison M.3ORCID,Sharma M. M.1ORCID,Zhang Yong-Hang3ORCID,Hu Jin1ORCID

Affiliation:

1. Department of Physics, University of Arkansas 1 , Fayetteville, Arkansas 72701

2. Department of Chemistry & Physics, University of Arkansas at Pine Bluff 2 , Pine Bluff, Arkansas 71603

3. Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering, Arizona State University 3 , Tempe, Arizona 85287

Abstract

α-Sn, generally known as gray tin, has attracted significant scientific interest due to its potential to host novel topological phases. Studying the transport properties of α-Sn thin films grown on the InSb substrate has been challenging, as the InSb substrate also significantly contributes to the transport properties. In this article, we report a novel approach to epitaxially grow α-Sn thin films on an InSb substrate with a resistive buffer layer of CdTe. Thin films of α−Sn1−xGex (x = 0, 0.025) alloy of 15 nm thickness have been grown using molecular beam epitaxy. The high quality of the samples has been determined through high-resolution x-ray diffraction. The CdTe buffer layer has high resistance and acts as an insulating virtual substrate, which significantly suppresses contribution from InSb. Magnetotransport measurements show clear Shubnikov–de Hass oscillations in α−Sn1−xGex (x = 0, 0.025) thin films. A change in oscillation frequency is observed upon alloying with Ge, implying a modification in the electronic structure and demonstrating the effectiveness of the CdTe buffer layer approach. This work provides a new approach that enables the electronic transport characterization of the α−Sn1−xGex alloy system, which enables the study of the topological quantum states using electronic transport and their device applications.

Funder

Energy Frontier Research Centers

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3