The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry

Author:

LIU Feng,ZHUANG Yue,CHU Haijing,FANG Zhi,WANG Wenchun

Abstract

Abstract In this paper the OH radicals produced by a needle–plate negative DC discharge in water vapor, N2 + H2O mixture gas and He + H2O mixture gas are investigated by a laser-induced fluorescence (LIF) system. With a ballast resistor in the circuit, the discharge current is limited and the discharges remain in glow. The OH rotation temperature is obtained from fluorescence rotational branch fitting, and is about 350 K in pure water vapor. The effects of the discharge current and gas pressure on the production and quenching processes of OH radicals are investigated. The results show that in water vapor and He + H2O mixture gas the fluorescence intensity of OH stays nearly constant with increasing discharge current, and in N2 + H2O mixture gas the fluorescence intensity of OH increases with increasing discharge current. In water vapor and N2 + H2O mixture gas the fluorescence intensity of OH decreases with increasing gas pressure in the studied pressure range, and in He + H2O mixture gas the fluorescence intensity of OH shows a maximum value within the studied gas pressure range. The physicochemical reactions between electrons, radicals, ground and metastable molecules are discussed. The results in this work contribute to the optimization of plasma reactivity and the establishment of a molecule reaction dynamics model.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province in China

National Natural Science Foundation of China

Innovative Talents Team Project of “Six Talent Peaks” of Jiangsu Province

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3