2D-imaging of absolute OH and H2O2 profiles in a He–H2O nanosecond pulsed dielectric barrier discharge by photo-fragmentation laser-induced fluorescence

Author:

van den Bekerom DirkORCID,Tahiyat Malik MORCID,Huang Erxiong,Frank Jonathan HORCID,Farouk Tanvir IORCID

Abstract

Abstract Pulsed dielectric barrier discharges (DBD) in He–H2O and He–H2O–O2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H2O2). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H2O2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H2O2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H2O2. OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H2O2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O2 in the He admixture decreases the OH densities and increases the H2O2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H2O2 mole fractions, except for the H2O2 in the He–H2O–O2 mixture which is relatively insensitive to the additional pulses.

Funder

U.S. Department of Energy

U.S. National Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3