Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies

Author:

Liu Feng,Zhuang Yue,Zhao Yulei,Chen Jie,Fang Zhi

Abstract

Abstract Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge in atmospheric pressure and high plasma-chemical reactivity. To further improve the plasma treatment efficiency and activity, a small amount of admixture can be introduced into working gases (usually Ar, He, N2), while it can affect plasma uniformity significantly. In this paper, oxygen is added into Ar nanosecond (ns) pulsed and AC DBDs DBD and the effect of the added oxygen on the uniformity and reactivity have been investigated with optical and electrical methods. The plasma uniformity is quantitatively analyzed by Gray Value Standard Deviation (GVSD) of discharge images. The optical emission spectroscopy (OES) measurement of the emission lines with different energy thresholds can reveal the tendency of T e under different operation conditions. The n e are estimated from the electrical analysis. It is found that the ns pulsed DBD shows a much better uniformity than AC DBD. With the addition of O2, the uniformity of ns-pulsed Ar DBD gets worse for the O2- negative ions by the attachment of electron on O2 distorts the space electric field and promotes the filamentary formation. While, in AC Ar DBD, the added O2 can reduce the n e and brightness of filaments, which enhances the plasma uniformity. Overdose O2 molecules cause drops of n e and T e to plasma extinction. The results can help to realize the establishment of the reactive and uniform atmospheric low temperature plasma sources.

Funder

National Nature Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3