Prospects of testing late-time cosmology with weak lensing of gravitational waves and galaxy surveys

Author:

Balaudo AnnaORCID,Garoffolo AliceORCID,Martinelli MatteoORCID,Mukherjee SuvodipORCID,Silvestri AlessandraORCID

Abstract

Abstract We investigate the synergy of upcoming galaxy surveys and gravitational wave (GW) experiments in constraining late-time cosmology, examining the cross-correlations between the weak lensing of gravitational waves (GW-WL) and the galaxy fields. Without focusing on any specific GW detector configuration, we benchmark the requirements for the high precision measurement of cosmological parameters by considering several scenarios, varying the number of detected GW events and the uncertainty on the inference of the source luminosity distance and redshift. We focus on ΛCDM and scalar-tensor cosmologies, using the Effective Field Theory formalism as a unifying language. We find that, in some of the explored setups, GW-WL contributes to the galaxy signal by doubling the accuracy on non-ΛCDM parameters, allowing in the most favourable scenarios to reach even percent and sub-percent level bounds. Though the most extreme cases presented here are likely beyond the observational capabilities of currently planned individual GW detectors, we show nonetheless that — provided that enough statistics of events can be accumulated — GW-WL offers the potential to become a cosmological probe complementary to LSS surveys, particularly for those parameters that cannot be constrained by other GW probes such as standard sirens.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference173 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3