Gravitational radiation from binary systems in f(R) gravity: A semi-classical approach

Author:

Narang Ashish,Mohanty Subhendra,Jana Soumya

Abstract

Abstract The rate of energy loss and orbital period decay of quasi- stable compact binary systems are derived in f(R) theory of gravity using the method of a single vertex graviton emission process from a classical source. After linearising the f(R) action written in an equivalent scalar-tensor format in the Einstein frame, we identify the appropriate interaction terms between the massless spin-2 tensor mode, massive scalar mode, and the energy momentum tensor. The definition of the scalar field is related to the f(R) models. Then using the interaction vertex we compute the rate of energy loss due to spin-2 quadrupole radiation, which comes out to be the same as the Peter-Mathews formula with a multiplication factor, and also the energy loss due to the scalar dipole radiation. The total energy loss is the sum of these two contributions. Our derivation is most general as it is applicable for both arbitrary eccentricity of the binary orbits and arbitrary mass of the scalar field. Using the derived theoretical formula for the period decay of the binary systems, we compare the predictions of f(R) gravity and general relativity for the observations of four binary systems, i.e. Hulse-Taylor Binary, PSR J1141-6545, PSR J1738+0333, and PSR J0348+0432. Thus we put bound on three well-known f(R) dark energy models, namely the Hu-Sawicki, the Starobinsky, and the Tsujikawa model. We get the best constraint on f'(R 0)-1 (where R 0 is the scalar curvature of the Universe at the present epoch) from the Tsujikawa model, i.e |f'(R 0)-1| < 2.09 × 10-4. This bound is stronger than those from most of the astrophysical observations and even some cosmological observations.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3