Abstract
We study the two-body problem in the context of both dark energy and post-Newtonian modifications. In this unified framework, we demonstrate that dark energy plays the role of a critical period with TΛ = 2π/c√Λ ≈ 60 Gyr. We also show that the ratio between the orbital and critical periods naturally emerges from the Kretschmann scalar, which is a quadratic curvature invariant characterizing all binary systems effectively represented by de Sitter-Schwarzschild space-time. The suitability of a binary system in constraining dark energy is determined by the ratio between its Keplerian orbital period, TK, and the critical period, TΛ. Systems with TK ≈ TΛ are optimal for constraining the cosmological constant, Λ, such as the Local Group and the Virgo Cluster. Systems with TK ≪ TΛ are dominated by attractive gravity (which are best suited for studying modified gravity corrections). Systems with TK ≫ TΛ are dominated by repulsive dark energy and can thus be used to constrain Λ from below. We used our unified framework of post-Newtonian and dark-energy modifications to calculate the precession of bounded and unbounded astrophysical systems and infer constraints on Λ from them. We analyzed pulsars, the solar system, S stars around Sgr A*, the Local Group, and the Virgo Cluster, having orbital periods of days to gigayears. Our results reveal that the upper bound on the cosmological constant decreases when the orbital period of the system increases, emphasizing that Λ is a critical period in binary motion.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献