Supervised learning approaches to modeling pedestal density

Author:

Kit AORCID,Järvinen A EORCID,Frassinetti LORCID,Wiesen SORCID

Abstract

Abstract Pedestals are the key to conventional high performance plasma scenarios in tokamaks. However, high fidelity simulations of pedestal plasmas are extremely challenging due to the multiple physical processes and scales that are encompassed by tokamak pedestals. The leading paradigm for predicting the pedestal top pressure is encompassed by EPED-like models. However, EPED does not predict the pedestal top density, n e , p e d , but requires it as an input. EUROPED (Saarelma et al 2019 Phys. Plasmas 26 072501) employs simplified models, such as log-linear regression, to constrain n e , p e d with tokamak machine control parameters in an EPED-like model. However, these simplified models for n e , p e d often show disagreements with experimental observations and do not use all of the available numerical and categorical machine control information. In this work it is observed that using the same input parameters, decision tree ensembles and deep learning models improves the predictive quality of n e , p e d by about 23% relative to that obtained with log-linear scaling laws, measured by root mean square error. Including all of the available tokamak machine control parameters, both numerical and categorical, leads to further improvement of about 13%. Finally, predictive quality was tested when including global normalized plasma pressure and effective charge state as inputs, as these parameters are known to impact pedestals. Surprisingly, these parameters lead to only a few percent further improvement of the predictive quality. The corresponding code for this analysis can be found at github.com/fusionby2030/supervised_learning_jetpdb.

Funder

European Union

EUROfusion Consortium

Euratom

European Commission

Research and Training Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3