Data-driven models in fusion exhaust: AI methods and perspectives

Author:

Wiesen S.ORCID,Dasbach S.ORCID,Kit A.ORCID,Jaervinen A.E.ORCID,Gillgren A.ORCID,Ho A.ORCID,Panera A.ORCID,Reiser D.ORCID,Brenzke M.ORCID,Poels Y.ORCID,Westerhof E.ORCID,Menkovski V.,Derks G.F.ORCID,Strand P.ORCID

Abstract

Abstract A review is given on the highlights of a scatter-shot approach of developing machine-learning methods and artificial neural networks based fast predictors for the application to fusion exhaust. The aim is to enable and facilitate optimized and improved modeling allowing more flexible integration of physics models in the light of extrapolations towards future fusion devices. The project encompasses various research objectives: (a) developments of surrogate model predictors for power & particle exhaust in fusion power plants; (b) assessments of surrogate models for time-dependent phenomena in the plasma-edge; (c) feasibility studies of micro–macro model discovery for plasma-facing components surface morphology & durability; and (d) enhancements of pedestal models & databases through interpolators and generators exploiting uncertainty quantification. Presented results demonstrate useful applications for machine-learning and artificial intelligence in fusion exhaust modeling schemes, enabling an unprecedented combination of both fast and accurate simulation.

Funder

EUROfusion

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3