Simulation studies of the interaction of laser radiation with additively manufactured foams

Author:

Milovich J LORCID,Jones O SORCID,Berger R L,Kemp G E,Oakdale J S,Biener J,Belyaev M A,Mariscal D A,Langer S,Sterne P A,Sepke S,Stadermann M

Abstract

Abstract The interaction of laser radiation with foams of various porosities and low densities has been the subject of several numerical and experimental studies (Nicolaï et al 2012 Phys. Plasmas 19 113105; Perez et al 2014 Phys. Plasmas 21 023102). In all cases, the modeling of low-Z under-dense foams as uniform gases of equivalent average density using standard radiation-hydrodynamics codes has resulted in heat-front velocities that are considerably faster than those observed experimentally. It has been theoretically conjectured that this difference may be attributed to the breakdown of the foam’s morphology, leading to a dynamics of filament expansion where the ion and electron energy partitions are significantly different from those calculated using the uniform gas model. We found that 3D computer simulations employing a disconnected representation of the foam’s microstructure which allowed for the dynamics of foam element heating, expansion, and stagnation largely supported the theoretical picture. Simulations using this model for laser experiments on under-dense 2 mg cc−1 SiO2 aerogel foams (Mariscal et al 2021 Phys. Plasmas 28 013106) reproduced the experimental data fairly well. We used the validated model in simulations of low-density structured foam-like materials (produced via additive manufacturing) with a variety of morphologies. We found that the log-pile configurations were consistent with the analytical propagation model of Gus’kov et al (2011 Phys. Plasmas 18 103114). Further validation of the model was obtained by simulating experiments performed at the Jupiter Laser Facility using the log-pile and octet-truss foam morphologies. Simulations of the foam–laser interaction using a wave propagation code showed that the microstructure was able to enhance stimulated Brillouin scattering (SBS) by concentrating the light energy into density holes. In turn, this promotes laser filamentation, reducing SBS and bringing the predicted values closer to the experimental data.

Funder

US Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3