The dynamics, mixing, and thermonuclear burn of compressed foams with varied gas fills

Author:

Haines Brian M.1ORCID,Murphy T. J.1ORCID,Olson R. E.1ORCID,Kim Y.1ORCID,Albright B. J.1ORCID,Appelbe B.2,Day T. H.1,Gunderson M. A.1,Hamilton C. E.1,Morrow T.1ORCID,Patterson B. M.1

Affiliation:

1. Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. Department of Physics, Imperial College London 2 , London SW7 2AZ, United Kingdom

Abstract

Inertial confinement fusion (ICF) implosions involve highly coupled physics and complex hydrodynamics that are challenging to model computationally. Due to the sensitivity of such implosions to small features, detailed simulations require accurate accounting of the geometry and dimensionality of the initial conditions, including capsule defects and engineering features such as fill tubes used to insert gas into the capsule, yet this is computationally prohibitive. It is therefore difficult to evaluate whether discrepancies between the simulation and experiment arise from inadequate fidelity to the capsule geometry and drive conditions, uncertainties in physical data used by simulations, or inadequate physics. We present results from detailed high-resolution three-dimensional simulations of ICF implosions performed as part of the MARBLE campaign on the National Ignition Facility [Albright et al., Phys. Plasmas 29, 022702 (2022)]. These experiments are foam-filled separated-reactant experiments, where deuterons reside in the foam and tritons reside in the capsule gas fill and deuterium–tritium (DT) fusion reactions only occur in the presence of mixing between these materials. Material mixing in these experiments is primarily seeded by shock interaction with the complex geometry of the foam and gas fill, which induces the Richtmyer–Meshkov instability. We compare results for experiments with two different gas fills (ArT and HT), which lead to significant differences in the hydrodynamic and thermodynamic developments of the materials in the implosion. Our simulation results show generally good agreement with experiments and demonstrate a substantial impact of hydrodynamic flows on measured ion temperatures. The results suggest that viscosity, which was not included in our simulations, is the most important unmodeled physics and qualitatively explains the few discrepancies between the simulation and experiment. The results also suggest that the hydrodynamic treatment of shocks is inadequate to predict the heating and yield produced during shock flash, when the shock converges at the center of the implosion. Alternatively, underestimation of the level of radiative preheat from the shock front could explain many of the differences between the experiment and simulation. Nevertheless, simulations are able to reproduce many experimental observables within the level of experimental reproducibility, including most yields, time-resolved X-ray self-emission images, and an increase in burn-weighted ion temperature and neutron down-scattered ratio in the line of sight that includes a jet seeded by the glue spot that joins capsule hemispheres.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3