Nonlinear branched flow of intense laser light in randomly uneven media

Author:

Jiang K.12ORCID,Huang T. W.2ORCID,Wu C. N.2ORCID,Yu M. Y.2ORCID,Zhang H.2ORCID,Wu S. Z.2,Zhuo H. B.2ORCID,Pukhov A.3ORCID,Zhou C. T.12,Ruan S. C.12

Affiliation:

1. College of Applied Sciences, Shenzhen University 1 , Shenzhen 518060, People’s Republic of China

2. Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University 2 , Shenzhen 518118, People’s Republic of China

3. Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf 3 , 40225 Düsseldorf, Germany

Abstract

Branched flow is an interesting phenomenon that can occur in diverse systems. It is usually linear in the sense that the flow does not alter the properties of the medium. Branched flow of light on thin films has recently been discovered. It is therefore of interest to know whether nonlinear light branching can also occur. Here, using particle-in-cell simulations, we find that in the case of an intense laser propagating through a randomly uneven medium, cascading local photoionization by the incident laser, together with the response of freed electrons in the strong laser fields, triggers space–time-dependent optical unevenness. The resulting branching pattern depends dramatically on the laser intensity. That is, the branching here is distinct from the existing linear ones. The observed branching properties agree well with theoretical analyses based on the Helmholtz equation. Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Top Talent of SZTU

GCS Juelich

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3