Abstract
Abstract
Physics-based representations constructed using only atomic positions and nuclear charges (also known as quantum machine learning, QML) allow for the reliable and efficient inference of molecular properties from training data. Chemistry is a science rooted in chemical reactions, naturally involving multiple molecular species. Here, we extend QML’s capabilities to include the prediction of reaction properties by defining reaction representations: representations taking as input multiple molecules participating in a reaction, each represented by their corresponding atomic charges and three-dimensional coordinates. Several reaction representations are constructed from established molecular ones and benchmarked on four datasets representative of thermodynamic or kinetic reaction properties. One of these, the Hydroform-22-TS dataset (2350 energy barriers), is introduced as part of this work. The relevant ingredients for a high-performing reaction representation are extracted and used to construct the Bond-Based Reaction Representation (
B
2
R
2
) for the prediction of quantum-chemical properties of chemical reactions. Finally, variations of
B
2
R
2
with varying representation size vs. performance are provided.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献