Abstract
AbstractComputational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献