Machine learning to predict the antimicrobial activity of cold atmospheric plasma-activated liquids

Author:

Özdemir Mehmet AkifORCID,Özdemir Gizem DilaraORCID,Gül Merve,Güren Onan,Ercan Utku KürşatORCID

Abstract

Abstract Plasma is defined as the fourth state of matter, and non-thermal plasma can be produced at atmospheric pressure under a high electrical field. The strong and broad-spectrum antimicrobial effect of plasma-activated liquids (PALs) is now well known. The antimicrobial effects of PALs depend on many different variables, which complicates the comparison of different studies and determining the most dominant parameters for the antimicrobial effect. The proven applicability of machine learning (ML) in the medical field is encouraging for its application in the field of plasma medicine as well. Thus, ML applications on PALs could present a new perspective to better understand the influences of various parameters on their antimicrobial effects. In this paper, comparative supervised ML models are presented by using previously obtained data to predict the in vitro antimicrobial activity of PALs. A comprehensive literature search was performed, and 12 distinct features related to PAL-microorganism interactions were collected from 33 relevant articles to automatically predict the antimicrobial activity of PALs. After the required normalization, feature encoding, and resampling steps, two supervised ML methods, namely classification and regression, are applied to the data to obtain microbial inactivation (MI) predictions. For classification, MI is labeled in four categories, and for regression, MI is used as a continuous variable. Sixteen different classifiers and 14 regressors are implemented to predict the MI value. Two different robust cross-validation strategies are conducted for classification and regression models to evaluate the proposed method: repeated stratified k-fold cross-validation and k-fold cross-validation, respectively. We also investigate the effect of different features on models. The results demonstrated that the hyperparameter-optimized Random Forest Classifier (oRFC) and Random Forest Regressor (oRFR) provided superior performance compared to other models for classification and regression. Finally, the best test accuracy of 82.68% for oRFC and R 2 of 0.75 for the oRFR are obtained. Furthermore, the determined most important features of predictive models are in line with the outcomes of PALs reported in the literature. An ML framework can accurately predict the antimicrobial activity of PALs without the need for any experimental studies. To the best of our knowledge, this is the first study that investigates the antimicrobial efficacy of PALs with ML. Furthermore, ML techniques could contribute to a better understanding of plasma parameters that have a dominant role in the desired antimicrobial effect. Moreover, such findings may contribute to the definition of a plasma dose in the future.

Funder

Izmir Katip Celebi University Scientific Research Projects Coordination Unit

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3