Machine learning assisted optical diagnostics on a cylindrical surface dielectric barrier discharge

Author:

Stefas DORCID,Giotis KORCID,Invernizzi L,Höft HORCID,Hassouni KORCID,Prasanna SORCID,Svarnas PORCID,Lombardi GORCID,Gazeli KORCID

Abstract

Abstract The present study explores combining machine learning (ML) algorithms with standard optical diagnostics (such as time-integrated emission spectroscopy and imaging) to accurately predict operating conditions and assess the emission uniformity of a cylindrical surface dielectric barrier discharge (SDBD). It is demonstrated that these optical diagnostics can provide the input data for ML which identifies peculiarities associated with the discharge emission pattern at different high voltage waveforms (AC and pulsed) and amplitudes. By employing unsupervised (principal component analysis (PCA)) and supervised (multilayer perceptron (MLP) neural networks) algorithms, the applied voltage waveform and amplitude are predicted based on correlations/differences identified within large amounts of corresponding data. PCA allowed us to effectively visualise patterns related to the voltage waveforms and amplitudes applied to the SDBD through a transformation of the spectroscopic/imaging data into principal components (PCs) and their projection to a two-dimensional PCs vector space. Furthermore, an accurate prediction of the voltage amplitude is achieved using the MLP which is trained with PCs. A particularly interesting aspect of this concept involves examining the uniformity of the emission pattern of the discharge. This was achieved by analysing spectroscopic data recorded at four different regions around the SDBD surface using the two ML algorithms. These discoveries are instrumental in enhancing plasma-induced processes. They open avenues for real-time control, monitoring, and optimization of plasma-based applications across diverse fields such as flow control for the present SDBD.

Funder

Laboratoire d’Excellence SEAM

Deutsche Forschungsgemeinschaft

Agence Nationale de la Recherche

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3