Unveiling the Potential: Can Machine Learning Cluster Colorimetric Images of Cold Atmospheric Plasma Treatment?

Author:

Ozdemir Gizem Dilara1ORCID,Ozdemir Mehmet Akif1ORCID,Sen Mustafa1ORCID,Ercan Utku Kürşat1ORCID

Affiliation:

1. Department of Biomedical Engineering Faculty of Engineering and Architecture Izmir Katip Celebi University Izmir 35620 Cigli Turkey

Abstract

In this transformative study, machine learning (ML) and t‐distributed stochastic neighbor embedding (t‐SNE) are employed to interpret intricate patterns in colorimetric images of cold atmospheric plasma (CAP)‐treated water. The focus is on CAP's therapeutic potential, particularly its ability to generate reactive oxygen and nitrogen species (RONS) that play a crucial role in antimicrobial activity. RGB, HSV, LAB, YCrCb, and grayscale color spaces are extracted from the colorimetric expression of oxidative stress induced by RONS, and these features are used for unsupervised ML, employing density‐based spatial clustering of applications with noise (DBSCAN). The DBSCAN model's performance is evaluated using homogeneity, completeness, and adjusted rand index with a predictive data distribution graph. The best results are achieved with 3,3′,5,5′‐tetramethylbenzidine–potassium iodide colorimetric assay solution immediately after plasma treatment, with values of 0.894, 0.996, and 0.826. t‐SNE is further conducted for the best‐case scenario to evaluate the clustering efficacy and find the best combination of features to better present the results. Correspondingly, t‐SNE enhances clustering efficacy and adeptly handles challenging points. The approach pioneers dynamic and comprehensive solutions, showcasing ML's precision and t‐SNE's transformative visualization. Through this innovative fusion, complex relationships are unraveled, marking a paradigm shift in biomedical analytical methodologies.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3