Multi-robot cardinality-balanced multi-Bernoulli filter simultaneous localization and mapping method

Author:

Zhang ZijingORCID,Zhang FeiORCID,Ji Chuantang

Abstract

Abstract In order to improve the simultaneous localization and mapping (SLAM) accuracy of mobile robots in complex indoor environments, the multi-robot cardinality-balanced multi-Bernoulli filter SLAM (MR-CBMber-SLAM) method is proposed. First of all, this method introduces a multi-Bernoulli filter based on the random finite set (RFS) theory to solve the complex data association problem. This method aims to overcome the problem that the multi-Bernoulli filter will overestimate the aspect of SLAM map feature estimation, and combines the strategy of balancing cardinality with a multi-Bernoulli filter. What is more, in order to further improve the accuracy and operating efficiency of SLAM, a multi-robot strategy and a multi-robot Gaussian information-fusion method are proposed. In the experiment, the MR-CBMber-SLAM method is compared with the multi-vehicle probability hypothesis density SLAM (MV-PHD-SLAM) method. The experimental results show that the MR-CBMber-SLAM method is better than MV-PHD-SLAM method. Therefore, it effectively verifies that the MR-CBMber-SLAM method is more adaptable to a complex indoor environment.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3