Dynamic characteristics and crack evolution laws of coal and rock under split Hopkinson pressure bar impact loading

Author:

Sun XiaoyuanORCID,Jin TingxuORCID,Li JihuiORCID,Xie JianlinORCID,Li ChuantianORCID,Li XiaoxiaORCID

Abstract

Abstract The dynamic mechanical properties and crack evolution characteristics of coal and rock during split Hopkinson pressure bar (SHPB) impact failure are important contents for analysis. In previous studies, the coal and rock specimens used have usually been independent and not closely correlated. In addition, quantitative characterization and analysis methods for coal and rock cracks are immature, and more information has not been fully revealed. The aims of this paper are to comprehensively explore both the dynamic mechanical properties and crack evolution characteristics of coal and rock during impact failure. First, experimental specimens are prepared from coal seam, direct roof rock strata and direct floor rock strata in the same area to highlight the correlations between test pieces. Second, a dynamic strain gauge and high-speed (HS) camera are adopted to reflect the stress wave signal and crack evolution. Then, based on digital image correlation (DIC) technology and the mass screening method, the evolution laws of surface cracks during crushing and the distribution characteristics of sample fragments after crushing are studied from the perspective of fractal, and finally compared with those of the simulation analysis. The results are as follows. (1) The coal and rock samples from the same area have both consistency and differences. The dynamic mechanical properties of coal and rock are affected by the impact velocity and the physical properties of the specimen. Higher impact speeds and densities lead to the more obvious brittleness of the specimen when destroyed. Conversely, the sample shows more plasticity and ductile yield. (2) The self-similarity is significantly manifested in the evolution of surface cracks during impact and the distribution characteristics of fragments after impact. The box dimension and quality screening dimension are applicable to quantitatively characterize the evolution process and results of coal and rock fractures. (3) The simulation results based on the Holmquist–Johnson–Cook (HJC) and Riedel–Hiermaier–Thoma (RHT) constitutive models agree well with the experimental results, and the RHT constitutive model is more consistent. This study may contribute to a more comprehensive understanding of the dynamic characteristics and crack evolution laws of coal and rock under impact loading and provide references for further research and discussion.

Funder

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Fundamental Research Program of Shanxi Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference110 articles.

1. Numerical simulation on damage and failure mechanism of rock under combined multiple strain rates;Zhu;Shock Vib.,2018

2. Study on rock mechanics in deep mining engineering;He;Chin. J. Rock Mech. Eng.,2005

3. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests;Zhu;Int. J. Impact Eng.,2012

4. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting;Xie;Tunn. Undergr. Space Tech.,2016

5. Qualitative and quantitative analysis of general regularity of coal and gas outburst;Cai;China Saf. Sci. J.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3