Experimental Investigation of Blast‐Induced Crack Propagation Based on Digital Image Correlation Analysis

Author:

R. San Miguel CarlotaORCID,Petropoulos NikolaosORCID,Yi ChangpingORCID,Johansson DanielORCID

Abstract

Blasting is widely used in civil and mining engineering projects, with the side effect of introducing damage to the remaining rock. The damage can be differentiated from the cracks in the remaining rock, which increases the concerns of safety and requirements for rock support. In situ study of crack development remains complicated and costly; therefore, small‐scale blasting experiments are a viable alternative for a detailed investigation of the crack propagation behavior. To fill the gap, this study examined a small‐scale blasting test by investigating the velocity of the cracks implementing the digital image correlation (DIC) technique and avoiding contact methods such as strain gauges. An ultra‐high‐speed camera (UHSC) was used to record the blasting test in a single blasthole rock‐like sample with a PETN cord. The experimental design underwent calibration until achieving the configuration of the equipment while ensuring the safety distance. The developed experimental methodology was tested successfully capturing the crack behavior. The analysis outcomes showed that the raw UHSC data needed to be preprocessed to enhance the tracking of cracks with the DIC method. The findings of the DIC data analysis indicated a fluctuation in the propagation velocity along the cracks (889–1129 m/s), revealing that the proposed methodology positively contributes to the propagation behavior of using the DIC method to track the blast‐induced cracks.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3