Numerical Simulation on Damage and Failure Mechanism of Rock under Combined Multiple Strain Rates

Author:

Zhu Wancheng1ORCID,Wei Jiong1,Niu Leilei1,Li Shuai1,Li Shaohua1

Affiliation:

1. Center for Rock Instability and Seismicity Research, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China

Abstract

During underground hard-rock mining, the drilling and blasting method currently remains the most economical excavation method, and the rock may experience a multistrain-rate spectrum under quasi-static, dynamic, and rheological loading conditions and their combination as well. The study on the damage mechanism of rock under multistrain-rate condition that induced by mining excavation is the fundamental issue for predicting the mining-induced hazards such as rockburst. In this study, the state of the art of rock damage and failure under different strain rates is reviewed first. Then, the numerical model for rock failure under multiple strain rates is formulated when the rock damage is taken as the main thread. Meanwhile, we summarize our work in this area over the past ten years, and the constitutive law for the damage and failure of rock under multistrain rates is presented. Finally, several numerical examples, i.e., rock damage and failure under combined static and dynamic load, rock damage and failure triggered by dynamic stress redistribution due to excavation, rock damage and failure induced by blasting, and rock damage and failure due to the combination of dynamic disturbance and rheological load, are presented. Based on these numerical simulations, the associated rock damage mechanism and failure behaviors under differently combined multiple strain rates are clarified, which may provide a theoretical basis for clarifying the rock failure mechanism during rockbursts and rock blasting. Also, further studies on the damage and failure of rock under multiple strain rates are suggested.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference201 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3