High-precision wavefront reconstruction from Shack-Hartmann wavefront sensor data by a deep convolutional neural network

Author:

Gu HuORCID,Zhao Ziyun,Zhang Zhigao,Cao Shuo,Wu Jingjing,Hu Lifa

Abstract

Abstract The Shack–Hartmann wavefront sensor (SHWFS) has been widely used for measuring aberrations in adaptive optics systems. However, its traditional wavefront reconstruction method usually has limited precision under field conditions because the weight-of-center calculation is affected by many factors, such as low signal-to-noise-ratio objects, strong turbulence, and so on. In this paper, we present a ResNet50+ network that reconstructs the wavefront with high precision from the spot pattern of the SHWFS. In this method, a nonlinear relationship is built between the spot pattern and the corresponding Zernike coefficients without using a traditional weight-of-center calculation. The results indicate that the root-mean-square (RMS) value of the residual wavefront is 0.0128 μm, which is 0.79% of the original wavefront RMS. Additionally, we can reconstruct the wavefront under atmospheric conditions, if the ratio between the telescope aperture’s diameter D and the coherent length r 0 is 20 or if a natural guide star of the ninth magnitude is available, with an RMS reconstruction error of less than 0.1 μm. The method presented is effective in the measurement of wavefronts disturbed by atmospheric turbulence for the observation of weak astronomical objects.

Funder

Chinese National Funding of Social Sciences

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shack-Hartmann wavefront reconstruction by deep learning neural network for adaptive optics;Unconventional Imaging, Sensing, and Adaptive Optics 2023;2023-10-03

2. Wavefront Reconstruction Method Based on Improved U-Net;2023 6th International Conference on Computer Network, Electronic and Automation (ICCNEA);2023-09-22

3. Benefits of Intelligent Fuzzy Controllers in Comparison to Classical Methods for Adaptive Optics;Photonics;2023-08-30

4. Compressed wavefront sensing based on deep neural network for atmospheric turbulence;Chinese Journal of Liquid Crystals and Displays;2023

5. 基于机器学习的激光自适应光学技术研究进展;Chinese Journal of Lasers;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3