Bearing fault diagnosis based on CNN-BiLSTM and residual module

Author:

Fu GuanghuaORCID,Wei Qingjuan,Yang Yongsheng,Li Chaofeng

Abstract

Abstract Bearings are key components of rotating machinery, and their fault diagnosis is essential for machinery operation. Bearing vibration signals belong to time series data, but traditional convolutional neural networks (CNNs) or recurrent neural networks cannot fully extract the fault features from these signals. To address the insufficient feature extraction and poor noise resistance, this paper proposes a fault diagnosis model based on continuous wavelet transform (CWT), CNN with channel attention, bidirectional long short-term memory network (BiLSTM) and residual module. Firstly, a parallel dual-path feature extraction mechanism is constructed which takes time-domain signals and time–frequency images transformed via CWT as the input respectively. Then BiLSTM extracts the time features of the signal as one path, and the CNN with efficient channel attention extracts the spatial features as the other path. This parallel neural network contributes to better feature extraction. Then, the residual module is applied to extract the global features to further improve the feature extraction ability and noise immunity. The experimental results demonstrate that the proposed model on the Case Western Reserve University dataset has better diagnostic accuracy under different working conditions and different signal-to-noise ratios than other methods. In addition, the model shows good generalization performance on Jiangnan University dataset.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3