Affiliation:
1. School of Civil Engineering, Dalian University for Nationalities, Dalian 116000, China
Abstract
The fire heat release rate (HRR) is a crucial parameter for describing the combustion process and its thermal effects. In recent years, some studies have employed fire scene images and deep learning algorithms to predict real-time fire HRR, which has led to the advancement of HRR prediction in terms of both lightweightness and real-time monitoring. Nevertheless, the development of an early-stage monitoring system for fires and the ability to predict future HRR based on current moment data represents a crucial foundation for evaluating the scale of indoor fires and enhancing the capacity to prevent and control such incidents. This paper proposes a deep learning model based on continuous fire scene images (containing both flame and smoke features) and their time-series information to predict the future transient fire HRR. The model (Att-BiLSTM) comprises three bi-directional long- and short-term memory (Bi-LSTM) layers and one attention layer. The model employs a bidirectional feature extraction approach, followed by the introduction of an attention mechanism to highlight the image features that have a critical impact on the prediction results. In this paper, a large-scale dataset is constructed by collecting 27,231 fire scene images with instantaneous HRR annotations from 40 different fire trials from the NIST database. The experimental results demonstrate that Att-BiLSTM is capable of effectively utilizing fire scene image features and temporal information to accurately predict future transient HRR, including those in high-brightness fire environments and complex fire source situations. The research presented in this paper offers novel insights and methodologies for fire monitoring and emergency response.
Funder
National Natural Science Foundation of China