Damage-related imbalance identification for UAV composite propeller blades based on bidirectional temporal convolutional network and a flexible sensing system

Author:

Gu Ran,Zhang Shufeng,Zhu Jialing,Zhu Haibin,Li YueORCID

Abstract

Abstract Damage to the composite propeller blades could lead to rotational imbalance, which seriously affects the operational safety of unmanned aerial vehicles (UAVs), therefore, a novel method combining the Teager energy operator (TEO) and bidirectional temporal convolutional network (BiTCN) is proposed for detecting, localizing, and quantifying the damage-related imbalance in the blades. A flexible sensing system that contains Micro electro mechanical sensor accelerometers, signal conditioning, and wireless transmission is integrated with the composite propeller for in-situ signal acquisition of the propeller blades. TEO is applied to demodulate and enhance the pulse compositions in vibration signals and singular value decomposition (SVD) is employed to suppress random noise, resulting in denoised Teager energy spectrums for model input. Temporal convolutional network (TCN) has been widely used in sequence signal modeling because the causal dilated convolution could learn the context information of sequence signals while maintaining the advantages of parallel computing. To fully extract the signal features, BiTCN models are established to learn both the forward and backward signal features. Experimental verification results show that the proposed method detects the existence of imbalance with 100% accuracy, and the accuracies of localization and quantization are 99.65% and 98.61%, respectively, which are much higher than those of the models with the original signal as input. In addition, compared with the other four different algorithms, BiTCN is superior in terms of convergence speed and prediction accuracy.

Funder

Open Fund for Key Laboratory of Reliability Physics and Application Technology of Electronic Components

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3