Bearing fault diagnosis method based on a multi-head graph attention network

Author:

Jiang Li,Li XingjieORCID,Wu LinORCID,Li YibingORCID

Abstract

Abstract The bearing is the core component of mechanical equipment, and attention has been paid to its health monitoring and fault diagnosis. Bearing fault diagnosis technology based on deep learning has been widely developed because of its powerful feature learning and fault classification ability. However, the traditional deep learning-based bearing fault diagnosis methods fail in mining the relationship between signals explicitly, which is beneficial to fault classification. Therefore, this paper proposes a new method based on a multi-head graph attention network (MHGAT) for bearing fault diagnosis. Firstly, it employs dynamic time warping to transform the original vibration signals into graph data with topological structure, so as to exploit the intrinsic structural information of the independent samples. Next, the graph data is input into the MHGAT, and the weights of neighbor nodes are learned automatically. Then, the MHGAT extracts the discriminative features from different scales and aggregates them into an enhanced, new feature representation of graph nodes through the multi-head attention mechanism. Finally, the enhanced, new features are fed into the SoftMax classifier for bearing fault diagnosis. The effectiveness of the proposed method is examined by two bearing datasets. The superiority of the proposed method is verified by comparison to traditional deep learning diagnosis models.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Hubei Province Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3