Improved GNN based on Graph-Transformer: A new framework for rolling mill bearing fault diagnosis

Author:

Hou Dongxiao1ORCID,Zhang Bo1,Chen Jiahui1,Shi Peiming2

Affiliation:

1. School of Control Engineering, Northeastern University at Qinhuangdao, P.R. China

2. A School of Electrical Engineering, Yanshan University ,Qinhuangdao, Hebei 066004, P.R. China

Abstract

The structure of the rolling mill system is complex and the operating conditions are changeable. Therefore, the interdependence between the data needs to be fully considered in the fault diagnosis of the rolling mill. Although graph neural network (GNN) is a powerful architecture based on non-Euclidean spatial data, the current method is difficult to represent the long-range dependence of rolling mill fault vibration signals. Simply increasing the depth of GNN is not enough to expand the receptive field of the model, because the larger GNN model may have the problem of gradient disappearance or transition smoothing. In order to solve the above problems, an improved graph neural network based on Graph-Transformer is proposed to diagnose the health status of rolling mill. This method first performs sliding maximum sampling on the spectrum of the original vibration signal to improve the frequency resolution and reduce the feature dimension. Second, the relationship between fault features is characterized by constructing affinity graph. Finally, the long-range dependency between paired features is learned through the readout module and the self-attention mechanism in Graph-Transformer and the diagnostic results are output by the classifier. The experimental results on the rolling mill platform show that this method can not only adapt to the changing working conditions of the rolling mill but also achieve excellent performance in the case of sample imbalance and strong noise.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3