Mechanical Fault Diagnosis of High-Voltage Circuit Breakers with Dynamic Multi-Attention Graph Convolutional Networks Based on Adaptive Graph Construction

Author:

Sui Guoqing1ORCID,Yan Jing1ORCID,Wu Yanze1ORCID,Xu Zhuofan1ORCID,Qi Meirong1,Zhang Zilong1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710000, China

Abstract

With the rapid development of deep learning, its powerful capabilities make it possible to perform mechanical fault diagnosis of high-voltage circuit breakers (HVCBs). Among deep learning approaches, the convolutional neural network is widely used. However, while it can extract features effectively, it also has some limitations. Specifically, it depends on a large number of training data and only takes data information into account without considering structural information. These shortcomings lead to unused information and unsatisfactory model results. To address these shortcomings, this paper proposes AKNN-DMGCN, a novel dynamic multi-attention graph convolutional network based on an adaptively constructed graph, which can achieve high accuracy and robust mechanical fault diagnosis of HVCBs. First, a novel adaptive k-nearest neighbor (AKNN) graph construction method is proposed to construct informative graphs. The AKNN method can mine the relationship between the original data samples and utilize the data and label information. Thus, it has high fault tolerance to noise signals and can construct a structure graph with rich and accurate information, which can improve the overall model performance. Then, a dynamic multi-attention graph convolutional network (DMGCN) is applied for mechanical fault diagnosis of HVCBs. DMGCN fully utilizes structural and numerical information representing HVCB signals to perform classification. DMGCN has a dynamic multi-attention mechanism with strong expressive ability, which allows it to achieve high diagnostic accuracy. The experimental results indicate that the accuracy of AKNN-DMGCN reaches 97.22% on a balanced dataset and 95.01% on an imbalanced dataset, which demonstrates that the proposed method is effective for both balanced and imbalanced samples.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3